34 research outputs found

    Rapid convergence of time-averaged frequency in phase synchronized systems

    Full text link
    Numerical and experimental evidence is presented to show that many phase synchronized systems of non-identical chaotic oscillators, where the chaotic state is reached through a period-doubling cascade, show rapid convergence of the time-averaged frequency. The speed of convergence toward the natural frequency scales as the inverse of the measurement period. The results also suggest an explanation for why such chaotic oscillators can be phase synchronized.Comment: 6 pages, 9 figure

    Detectability of non-differentiable generalized synchrony

    Full text link
    Generalized synchronization of chaos is a type of cooperative behavior in directionally-coupled oscillators that is characterized by existence of stable and persistent functional dependence of response trajectories from the chaotic trajectory of driving oscillator. In many practical cases this function is non-differentiable and has a very complex shape. The generalized synchrony in such cases seems to be undetectable, and only the cases, in which a differentiable synchronization function exists, are considered to make sense in practice. We show that this viewpoint is not always correct and the non-differentiable generalized synchrony can be revealed in many practical cases. Conditions for detection of generalized synchrony are derived analytically, and illustrated numerically with a simple example of non-differentiable generalized synchronization.Comment: 8 pages, 8 figures, submitted to PR

    Data driven optimal filtering for phase and frequency of noisy oscillations: application to vortex flowmetering

    Full text link
    A new method for extracting the phase of oscillations from noisy time series is proposed. To obtain the phase, the signal is filtered in such a way that the filter output has minimal relative variation in the amplitude (MIRVA) over all filters with complex-valued impulse response. The argument of the filter output yields the phase. Implementation of the algorithm and interpretation of the result are discussed. We argue that the phase obtained by the proposed method has a low susceptibility to measurement noise and a low rate of artificial phase slips. The method is applied for the detection and classification of mode locking in vortex flowmeters. A novel measure for the strength of mode locking is proposed.Comment: 12 pages, 10 figure

    Democratization in a passive dendritic tree : an analytical investigation

    Get PDF
    One way to achieve amplification of distal synaptic inputs on a dendritic tree is to scale the amplitude and/or duration of the synaptic conductance with its distance from the soma. This is an example of what is often referred to as “dendritic democracy”. Although well studied experimentally, to date this phenomenon has not been thoroughly explored from a mathematical perspective. In this paper we adopt a passive model of a dendritic tree with distributed excitatory synaptic conductances and analyze a number of key measures of democracy. In particular, via moment methods we derive laws for the transport, from synapse to soma, of strength, characteristic time, and dispersion. These laws lead immediately to synaptic scalings that overcome attenuation with distance. We follow this with a Neumann approximation of Green’s representation that readily produces the synaptic scaling that democratizes the peak somatic voltage response. Results are obtained for both idealized geometries and for the more realistic geometry of a rat CA1 pyramidal cell. For each measure of democratization we produce and contrast the synaptic scaling associated with treating the synapse as either a conductance change or a current injection. We find that our respective scalings agree up to a critical distance from the soma and we reveal how this critical distance decreases with decreasing branch radius

    Generalized Phase Synchronization in unidirectionally coupled chaotic oscillators

    Full text link
    We investigate phase synchronization between two identical or detuned response oscillators coupled to a slightly different drive oscillator. Our result is that phase synchronization can occur between response oscillators when they are driven by correlated (but not identical) inputs from the drive oscillator. We call this phenomenon Generalized Phase Synchronization (GPS) and clarify its characteristics using Lyapunov exponents and phase difference plots.Comment: 4 pages, 5 figure

    Branching dendrites with resonant membrane: a “sum-over-trips” approach

    Get PDF
    Dendrites form the major components of neurons. They are complex branching structures that receive and process thousands of synaptic inputs from other neurons. It is well known that dendritic morphology plays an important role in the function of dendrites. Another important contribution to the response characteristics of a single neuron comes from the intrinsic resonant properties of dendritic membrane. In this paper we combine the effects of dendritic branching and resonant membrane dynamics by generalising the “sum-over-trips” approach (Abbott et al. in Biol Cybernetics 66, 49–60 1991). To illustrate how this formalism can shed light on the role of architecture and resonances in determining neuronal output we consider dual recording and reconstruction data from a rat CA1 hippocampal pyramidal cell. Specifically we explore the way in which an Ih current contributes to a voltage overshoot at the soma

    Improved community structure detection using a modified fine tuning strategy

    Full text link
    The community structure of a complex network can be determined by finding the partitioning of its nodes that maximizes modularity. Many of the proposed algorithms for doing this work by recursively bisecting the network. We show that this unduely constrains their results, leading to a bias in the size of the communities they find and limiting their effectivness. To solve this problem, we propose adding a step to the existing algorithms that does not increase the order of their computational complexity. We show that, if this step is combined with a commonly used method, the identified constraint and resulting bias are removed, and its ability to find the optimal partitioning is improved. The effectiveness of this combined algorithm is also demonstrated by using it on real-world example networks. For a number of these examples, it achieves the best results of any known algorithm.Comment: 6 pages, 3 figures, 1 tabl

    Impact of network structure and cellular response on spike time correlations

    Get PDF
    Novel experimental techniques reveal the simultaneous activity of larger and larger numbers of neurons. As a result there is increasing interest in the structure of cooperative -- or correlated -- activity in neural populations, and in the possible impact of such correlations on the neural code. A fundamental theoretical challenge is to understand how the architecture of network connectivity along with the dynamical properties of single cells shape the magnitude and timescale of correlations. We provide a general approach to this problem by extending prior techniques based on linear response theory. We consider networks of general integrate-and-fire cells with arbitrary architecture, and provide explicit expressions for the approximate cross-correlation between constituent cells. These correlations depend strongly on the operating point (input mean and variance) of the neurons, even when connectivity is fixed. Moreover, the approximations admit an expansion in powers of the matrices that describe the network architecture. This expansion can be readily interpreted in terms of paths between different cells. We apply our results to large excitatory-inhibitory networks, and demonstrate first how precise balance --- or lack thereof --- between the strengths and timescales of excitatory and inhibitory synapses is reflected in the overall correlation structure of the network. We then derive explicit expressions for the average correlation structure in randomly connected networks. These expressions help to identify the important factors that shape coordinated neural activity in such networks

    Stochastic Delay Accelerates Signaling in Gene Networks

    Get PDF
    The creation of protein from DNA is a dynamic process consisting of numerous reactions, such as transcription, translation and protein folding. Each of these reactions is further comprised of hundreds or thousands of sub-steps that must be completed before a protein is fully mature. Consequently, the time it takes to create a single protein depends on the number of steps in the reaction chain and the nature of each step. One way to account for these reactions in models of gene regulatory networks is to incorporate dynamical delay. However, the stochastic nature of the reactions necessary to produce protein leads to a waiting time that is randomly distributed. Here, we use queueing theory to examine the effects of such distributed delay on the propagation of information through transcriptionally regulated genetic networks. In an analytically tractable model we find that increasing the randomness in protein production delay can increase signaling speed in transcriptional networks. The effect is confirmed in stochastic simulations, and we demonstrate its impact in several common transcriptional motifs. In particular, we show that in feedforward loops signaling time and magnitude are significantly affected by distributed delay. In addition, delay has previously been shown to cause stable oscillations in circuits with negative feedback. We show that the period and the amplitude of the oscillations monotonically decrease as the variability of the delay time increases

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201
    corecore